Long optical coherence times in a rare-earth-doped antiferromagnet (2025)

References

  1. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article ADS Google Scholar

  2. Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Article Google Scholar

  3. Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    Article ADS Google Scholar

  4. Böttger, T., Thiel, C. W., Cone, R. L. & Sun, Y. Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5. Phys. Rev. B 79, 115104 (2009).

    Article ADS Google Scholar

  5. Equall, R. W., Sun, Y., Cone, R. L. & Macfarlane, R. M. Ultraslow optical dephasing in Eu3+:Y2SiO5. Phys. Rev. Lett. 72, 2179–2182 (1994).

    Article ADS Google Scholar

  6. Le Dantec, M. et al. Twenty-three–millisecond electron spin coherence of erbium ions in a natural-abundance crystal. Sci. Adv. 7, eabj9786 (2021).

  7. Sun, Y., Thiel, C. W., Cone, R. L., Equall, R. W. & Hutcheson, R. L. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article Google Scholar

  8. Fraval, E., Sellars, M. J. & Longdell, J. J. Method of extending hyperfine coherence times in Pr3+:Y2SiO5. Phys. Rev. Lett. 92, 077601 (2004).

    Article ADS Google Scholar

  9. Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nat. Nanotechnol. 8, 561–564 (2013).

    Article ADS Google Scholar

  10. Mohammady, M. H., Morley, G. W. & Monteiro, T. S. Bismuth qubits in silicon: the role of EPR cancellation resonances. Phys. Rev. Lett. 105, 067602 (2010).

    Article ADS Google Scholar

  11. Ahlefeldt, R. L., Manson, N. B. & Sellars, M. J. Optical lifetime and linewidth studies of the 7F0 → 5D0 transition in EuCl3 6H2O: a potential material for quantum memory applications. J. Lumin. 133, 152–156 (2013).

    Article Google Scholar

  12. Berrington, M. C. et al. Negative refractive index in dielectric crystals containing stoichiometric rare-earth ions. Adv. Opt. Mater. 11, 2301167 (2023).

    Article Google Scholar

  13. Everts, J. R. et al. Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins. Phys. Rev. B 101, 214414 (2020).

    Article ADS Google Scholar

  14. Awschalom, D. et al. Development of quantum interconnects for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article Google Scholar

  15. Lambert, N. J., Rueda, A., Sedlmeir, F. & Schwefel, H. G. L. Coherent conversion between microwave and optical photons—an overview of physical implementations. Adv. Quantum Technol. 3, 1900077 (2020).

    Article Google Scholar

  16. Wang, C.-H., Li, F. & Jiang, L. Quantum capacities of transducers. Nat. Commun. 13, 6698 (2022).

    Article ADS Google Scholar

  17. Higginbotham, A. P. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 (2018).

    Article Google Scholar

  18. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article ADS Google Scholar

  19. Zhong, C. et al. Heralded generation and detection of entangled microwave–optical photon pairs. Phys. Rev. Lett. 124, 010511 (2020).

    Article ADS Google Scholar

  20. Fan, L. et al. Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits. Sci. Adv. 4, eaar4994 (2018).

    Article ADS Google Scholar

  21. Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article ADS Google Scholar

  22. Tu, H.-T. et al. High-efficiency coherent microwave-to-optics conversion via off-resonant scattering. Nat. Photonics 16, 291–296 (2022).

    Article ADS Google Scholar

  23. Vogt, T. et al. Efficient microwave-to-optical conversion using Rydberg atoms. Phys. Rev. A 99, 023832 (2019).

    Article ADS Google Scholar

  24. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article ADS Google Scholar

  25. Zhu, N. et al. Waveguide cavity optomagnonics for microwave-to-optics conversion. Optica 7, 1291–1297 (2020).

    Article ADS Google Scholar

  26. Everts, J. R., Berrington, M. C., Ahlefeldt, R. L. & Longdell, J. J. Microwave to optical photon conversion via fully concentrated rare-earth-ion crystals. Phys. Rev. A 99, 063830 (2019).

    Article ADS Google Scholar

  27. Xie, T., Fukumori, R., Li, J. & Faraon, A. Scalable microwave-to-optical transducers at the single-photon level with spins. Nat. Phys. https://doi.org/10.1038/s41567-025-02884-y (2025).

    Article Google Scholar

  28. Puel, T. O., et al.) PC126561E (SPIE, 2023).

  29. Puel, T. O., Turflinger, A. T., Horvath, S. P., Thompson, J. & Flatté, M. E. Enhancement of microwave to optical spin-based quantum transduction via a magnon mode. In Proc. Quantum Computing, Communication, and Simulation IV, Vol. PC12911 (eds Hemmer, P. R. & Migdall, A. L.) PC129110H (SPIE, 2024).

  30. Puel, T. O., Turflinger, A. T., Horvath, S. P., Thompson, J. D. & Flatté, M. E. Enhancement of microwave to optical spin-based quantum transduction via a magnon mode. Preprint at arxiv.org/abs/2411.12870 (2024).

  31. Milligan, W. O. & Vernon, L. W. Crystal structure of heavy metal orthovanadates. J. Phys. Chem. 56, 145–147 (1952).

    Article Google Scholar

  32. Cashion, J. D., Cooke, A. H., Hoel, L. A., Martin, D. M. & Wells, M. R. Proc. International Symposium on Rare Earths (Centre National de la Recherche Scientifique, 1970).

  33. Xie, T. et al. Characterization of Er3+:YVO4 for microwave to optical transduction. Phys. Rev. B 104, 054111 (2021).

    Article ADS Google Scholar

  34. Li, P.-Y. et al. Optical spectroscopy and coherent dynamics of 167Er3+:YVO4 at 1.5 μm below 1 K. J. Lumin. 225, 117344 (2020).

    Article Google Scholar

  35. Page, J. H. & Rosenberg, H. M. Ultrasonic attenuation in GdVO4 at 9 GHz. J. Phys. C. 10, 353–367 (1977).

    Article ADS Google Scholar

  36. Bertini, C., Toncelli, A., Tonelli, M., Cavalli, E. & Magnani, N. Optical spectroscopy and laser parameters of GdVO4:Er3+. J. Lumin. 106, 235–242 (2004).

    Article Google Scholar

  37. Laplane, C., Zambrini Cruzeiro, E., Fröwis, F., Goldner, P. & Afzelius, M. High-precision measurement of the Dzyaloshinsky-Moriya interaction between two rare-earth ions in a solid. Phys. Rev. Lett. 117, 037203 (2016).

    Article ADS Google Scholar

  38. Jongerden, G. J., Kil, A. J., Dijkhuis, J. I., Arts, A. F. & De Wijn, H. W. Optical generation of magnons by direct spin-magnon relaxation in MnF2: Er3+. J. Phys. Colloq. 46, C7-241–C7-245 (1985).

    Article Google Scholar

  39. Abraham, M. M., Baker, J. M., Bleaney, B., Pfeffer, J. Z. & Wells, M. R. Antiferromagnetic resonance in GdVO4. J. Phys. Condens. Matter 4, 5443–5446 (1992).

    Article ADS Google Scholar

  40. Kanai, S. et al. Generalized scaling of spin qubit coherence in over 12,000 host materials. Proc. Natl Acad. Sci. USA 119, e2121808119 (2022).

    Article Google Scholar

  41. Singh, M. K. et al. Epitaxial Er-doped Y2O3 on silicon for quantum coherent devices. APL Mater. 8, 031111 (2020).

    Article ADS Google Scholar

  42. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article ADS Google Scholar

  43. O’Brien, C., Lauk, N., Blum, S., Morigi, G. & Fleischhauer, M. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal. Phys. Rev. Lett. 113, 063603 (2014).

    Article ADS Google Scholar

  44. Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article ADS Google Scholar

  45. Welinski, S. et al. Electron spin coherence in optically excited states of rare-earth ions for microwave to optical quantum transducers. Phys. Rev. Lett. 122, 247401 (2019).

    Article ADS Google Scholar

  46. King, G. G. G., Barnett, P. S., Bartholomew, J. G., Faraon, A. & Longdell, J. J. Probing strong coupling between a microwave cavity and a spin ensemble with Raman heterodyne spectroscopy. Phys. Rev. B 103, 214305 (2021).

    Article ADS Google Scholar

  47. Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y.-H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article ADS Google Scholar

  48. DeVoe, R. G., Szabo, A., Rand, S. C. & Brewer, R. G. Ultraslow optical dephasing of LaF3:Pr3+. Phys. Rev. Lett. 42, 1560–1563 (1979).

    Article ADS Google Scholar

  49. Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 126, 151101 (2019).

    Article ADS Google Scholar

  50. Longdell, J. J. Dieke: crystal field calculation for rare earths. GitHub https://github.com/jevonlongdell/dieke (2024).

Download references

Long optical coherence times in a rare-earth-doped antiferromagnet (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Edwin Metz

Last Updated:

Views: 6571

Rating: 4.8 / 5 (78 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Edwin Metz

Birthday: 1997-04-16

Address: 51593 Leanne Light, Kuphalmouth, DE 50012-5183

Phone: +639107620957

Job: Corporate Banking Technician

Hobby: Reading, scrapbook, role-playing games, Fishing, Fishing, Scuba diving, Beekeeping

Introduction: My name is Edwin Metz, I am a fair, energetic, helpful, brave, outstanding, nice, helpful person who loves writing and wants to share my knowledge and understanding with you.